Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.654
Filtrar
1.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38571886

RESUMO

Meningiomas, the most common primary brain tumors in adults, are often benign and curable by surgical resection. However, a subset is of higher grade, shows aggressive growth behavior as well as brain invasion, and often recurs even after several rounds of surgery. Increasing evidence suggests that tumor classification and grading primarily based on histopathology do not always accurately predict tumor aggressiveness and recurrence behavior. The underlying biology of aggressive treatment-resistant meningiomas and the impact of specific genetic aberrations present in these high-grade tumors is still only insufficiently understood. Therefore, an in-depth research into the biology of this tumor type is warranted. More recent studies based on large-scale molecular data such as whole exome/genome sequencing, DNA methylation sequencing, and RNA sequencing have provided new insights into the biology of meningiomas and have revealed new risk factors and prognostic subtypes. The most common genetic aberration in meningiomas is functional loss of NF2 and occurs in both low- and high-grade meningiomas, whereas NF2-wildtype meningiomas are enriched for recurrent mutations in TRAF7, KLF4, AKT1, PI3KCA, and SMO and are more frequently benign. Most meningioma mouse models are based on patient-derived xenografts and only recently have new genetically engineered mouse models of meningioma been developed that will aid in the systematic evaluation of specific mutations found in meningioma and their impact on tumor behavior. In this article, we review recent advances in the understanding of meningioma biology and classification and highlight the most common genetic mutations, as well as discuss new genetically engineered mouse models of meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Animais , Camundongos , Meningioma/genética , Meningioma/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Fator 4 Semelhante a Kruppel , Mutação , Prognóstico
2.
J Ethnopharmacol ; 328: 118027, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38537844

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zishen Qingre Lishi Huayu recipe (ZQLHR) is a herbal recipe created on the basis on the theory of traditional Chinese medicine and clinical practice, and is mainly used in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanism for this fact has not been clearly elucidated. AIM OF THE STUDY: To verify whether ZQLHR regulates granulosa cells (GCs) proliferation and apoptosis through the Krüppel-like factor 4 (KLF4) - CCATT enhancer-binding proteinß (C/EBPß) pathway, and to provide in vitro molecular mechanism supporting for the effects of ZQLHR to enhance follicular development and treat patients with PCOS. MATERIALS AND METHODS: Based on previous experiments, we performed the following experiments. Firstly, we treated KGN cells (a steroidogenic human granulosa-like tumor cell line) for 48 h using different concentrations of ZQLHR in order to observe apoptosis in each group. Secondly, the mRNA and protein expression levels of KLF4 and C/EBPß in KGN cells after administrated with ZQLHR were examined by quantitative real-time PCR(q-PCR) and Western blot assay. Thirdly, after knocking down KLF4 and C/EBPß using siRNAs, the relationship between KLF4 and C/EBPß in KGN cells was detected. Further, cell counting kit-8 assay, colony formation assay and flow cytometry were used to verify whether ZQLHR promotes proliferation and facilitates apoptosis in KGN cells through the KLF4-C/EBPß pathway. Finally, q-PCR and Western blot were used to test whether ZQLHR mediated proliferation and apoptosis-related factors such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (BAX), proliferating cell nuclear antigen (PCNA) and cleaved caspase-3 to affect the proliferation and apoptosis of KGN cells through the KLF4-C/EBPß pathway. CONCLUSIONS: ZQLHR, containing 0.2% by volume, administered to KGN cells resulted in the lowest rate of apoptosis. The expression levels of KLF4 and C/EBPß were increased in KGN cells following ZQLHR treatment. Additionally, ZQLHR promoted proliferation and inhibited apoptosis of KGN cells by modulating proliferation and apoptosis-related factors via the KLF4-C/EBPß pathway. Furthermore, we confirmed that KLF4 and C/EBPß regulate each other in KGN cells. These findings indicate that ZQLHR enhances the proliferation of GCs and suppresses their apoptosis, which constitutes a therapeutic mechanism for treating patients with PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Fator 4 Semelhante a Kruppel , Apoptose , Células da Granulosa , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , MicroRNAs/genética
3.
Stem Cell Res ; 76: 103366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430737

RESUMO

Epilepsy affects âˆ¼ 65 million people worldwide. Status epilepticus can lead to life-threatening if untreated. In this study, peripheral blood mononuclear cells were isolated from a young patient patient bearing a Nitrogen Perntease Regulator Like 2 Protein (NPRL2) mutation and suffering from Epilepsy verified by clinical and genetic diagnosis. Induced pluripotent stem cells (iPSCs) were established by a non-integrative method, using plasmids carrying OCT4, SOX2, KLF4, BCL-XL and C-MYC. The established iPSCs presented typical pluripotent cells morphology, normal karyotype, and potential to differentiate into three germ layers. Our approach offers a useful model to explore pathogenesis and therapy of Epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Leucócitos Mononucleares/metabolismo , Fator 4 Semelhante a Kruppel , Linhagem Celular , Mutação/genética , Diferenciação Celular/genética , Proteínas Supressoras de Tumor/genética
4.
Stem Cell Res ; 76: 103371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452705

RESUMO

Autosomal dominant neurodevelopmental disorder with or without hyperkinetic movements and seizures (NDHMSD) is a rare neurological disorder characterized by neurodevelopmental disorder and hyperkinetic movement, with or without seizures. Heterozygous mutation in the GRIN1 encoding the subunit 1 of the N-methyl-D-aspartate receptor caused this disorder. We first established an induced pluripotent stem cell (iPSC) line from a male patient with c.389A > G mutation in the GRIN1, via reprogramming with KLF4, SOX2, OCT3/4, and c-MYC. Through identification examination, the iPSCs (GWCMCi006-A) stably expressed pluripotency-associated stem cell markers, maintained a normal karyotype, and showed proliferative potential for three-germ layers differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Hipercinese/metabolismo , Fator 4 Semelhante a Kruppel , Mutação/genética , Diferenciação Celular/genética , Convulsões , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Int Immunopharmacol ; 130: 111797, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442582

RESUMO

Cancer stem cells (CSCs) are known for their potent ability to drive tumor initiation and recurrence, yet the molecular mechanisms regulating CSCs are still unclear. Our study found a positive correlation between increased levels of miR-29a and better survival rates in early-stage breast cancer patients, but a negative correlation in late-stage patients, suggesting a dual function of miR-29a in regulating breast cancer. Furthermore, miR-29a showed significant downregulation in the ALDH+ breast cancer stem cell population compared to non-stem cancer cells. Overexpression of miR-29a in human breast cancer cells reduced the proportion of CSCs, suppressed their ability to form mammospheres, and inhibited the expression of stemness genes SOX2, KLF4, and hTERT in vitro. Conversely, knockdown of miR-29a in breast cancer cells showed opposite effects. Tumor xenograft experiments revealed that miR-29a overexpression significantly inhibited tumorigenesis initiated by MDA-MB-231 cell transplantation in nude mice. We further demonstrated that Krüppel-like factor 4 (KLF4), a key gene that regulates cell stemness, was a direct target of miR-29a in breast cancer cells. miR-29a suppressed the expression of KLF4 at both mRNA and protein levels. Reintroduction of KLF4 into breast cancer cells rescued the miR-29a-induced CSC suppression phenotype. In summary, our study is the first to demonstrate that miR-29a-KLF4 signaling inhibits breast tumor initiation by regulating CSCs, which provides novel therapeutic targets for preventing breast tumor initiation.


Assuntos
Neoplasias da Mama , Fator 4 Semelhante a Kruppel , MicroRNAs , Células-Tronco Neoplásicas , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo
6.
Stem Cell Res ; 76: 103355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412659

RESUMO

In this study, we have established human induced pluripotent stem cell (hiPSC) line, NIMHi010-A of a 42-year-old healthy donor. The iPSC line was generated from human dermal fibroblasts using Sendai viruses carrying reprogramming factors c-MYC, SOX2, KLF4, and OCT4 under a feeder-free culture system. The generated hiPSC line expressed typical pluripotency markers, displayed a normal karyotype, and demonstrated the potential to differentiate into the three germ layers. This hiPSC line will serve as a healthy control model for physiological processes and drug screening of Asian origin from Indian population.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fibroblastos/metabolismo , Pele , Vírus Sendai , Diferenciação Celular/fisiologia , Reprogramação Celular
7.
Cell Syst ; 15(2): 109-133.e10, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335955

RESUMO

Pluripotency can be induced in somatic cells by the expression of OCT4, KLF4, SOX2, and MYC. Usually only a rare subset of cells reprogram, and the molecular characteristics of this subset remain unknown. We apply retrospective clone tracing to identify and characterize the rare human fibroblasts primed for reprogramming. These fibroblasts showed markers of increased cell cycle speed and decreased fibroblast activation. Knockdown of a fibroblast activation factor identified by our analysis increased the reprogramming efficiency. We provide evidence for a unified model in which cells can move into and out of the primed state over time, explaining how reprogramming appears deterministic at short timescales and stochastic at long timescales. Furthermore, inhibiting the activity of LSD1 enlarged the pool of cells that were primed for reprogramming. Thus, even homogeneous cell populations can exhibit heritable molecular variability that can dictate whether individual rare cells will reprogram or not.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Estudos Retrospectivos , Fibroblastos
8.
Stem Cell Res ; 76: 103320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309149

RESUMO

Here we introduce the human induced pluripotent stem cell lines (hiPSCs), HIMRi004-A and HIMRi005-A from dermal fibroblasts of a 48-year-old female (HIMRi004-A) carrying missense mutation that translate to the first described filamin C isoform p.W2710X and from a 56-year-old female (HIMRi005-A) carrying a recently described mutation in the same domain p.Y2704X. Both lines are generated via lentiviral expression of OCT4, SOX2, KLF4 and c-MYC. The lines display a typical embryonic stem cell-like morphology, express pluripotency markers, retain a normal karyotype (46, XX) and have the differentiation capacity in all three germ layers. The two lines can be used to elucidate the pathomechanisms of FLNC myofibrillar myopathies and to develop novel therapeutic options.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Pessoa de Meia-Idade , Diferenciação Celular/genética , Linhagem Celular , Dimerização , Fibroblastos/metabolismo , Filaminas/genética , Filaminas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Mutação/genética
9.
Ren Fail ; 46(1): 2316259, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345033

RESUMO

Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.


Assuntos
Injúria Renal Aguda , MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/metabolismo , Lipocalina-2 , Vimentina/metabolismo , Fator 4 Semelhante a Kruppel , Hibridização in Situ Fluorescente , Qualidade de Vida , Caderinas/metabolismo , Injúria Renal Aguda/genética , Transição Epitelial-Mesenquimal , Colágeno/metabolismo , Fibrose , Hipóxia
10.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338749

RESUMO

Mitral valve prolapse (MVP) is a common valvular disease, affecting 2-3% of the adult human population and is a degenerative condition. A total of 5-10% of the afflicted will develop severe mitral regurgitation, cardiac dysfunction, congestive heart failure, and sudden cardiac death. Naturally occurring myxomatous MVP in dogs closely resembles MVP in humans structurally, and functional consequences are similar. In both species, valvular interstitial cells (VICs) in affected valves exhibit phenotype consistent with activated myofibroblasts with increased alpha-smooth muscle actin (αSMA) expression. Using VICs collected from normal and MVP-affected valves of dogs, we analyzed the miRNA expression profile of the cells and their associated small extracellular vesicles (sEV) using RNA sequencing to understand the role of non-coding RNAs and sEV in MVP pathogenesis. miR-145 was shown to be upregulated in both the affected VICs and sEV, and overexpression of miR-145 by mimic transfection in quiescent VIC recapitulates the activated myofibroblastic phenotype. Concurrently, KLF4 expression was noted to be suppressed by miR-145, confirming the miR-145-KLF4-αSMA axis. Targeting this axis may serve as a potential therapy in controlling pathologic abnormalities found in MVP valves.


Assuntos
Estenose da Valva Aórtica , Fator 4 Semelhante a Kruppel , MicroRNAs , Prolapso da Valva Mitral , Adulto , Animais , Cães , Humanos , Valva Aórtica/patologia , Células Cultivadas , MicroRNAs/genética , Prolapso da Valva Mitral/metabolismo , Prolapso da Valva Mitral/patologia , Actinas/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo
11.
Immun Inflamm Dis ; 12(2): e1199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411328

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is one of the most common diseases in the gastrointestinal tract related to abnormal inflammation. Pyroptosis, which is characterized by the formation of inflammasome, activation of caspase-1, and separation of N- and C-terminus of gasdermin D (GSDMD), and may be involved in the pathogenesis of IBD. Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor expressed in differentiated epithelial cells. KLF4 mediates proinflammatory signaling in macrophages. Here, we tested whether KLF4 is functional in pyroptosis of UC. METHODS: In human UC tissues and/or lipopolysaccharide (LPS)/adenosine 5-triphosphate (ATP) stimulation human colon epithelial cells, KLF4, TXNIP, Cleave-Caspase-1, and GSDMD expression were detected through quantitative reverse transcription polymerase chain reaction (PCR), immunohistochemical and western blot assay. Interleukin (IL)-1ß and IL-18 levels were quantified by enzyme-linked immunosorbent assay. We successfully constructed a KLF4-silenced colon epithelial cell line using an adenovirus vector. We apply the UCSC and JASPAR to predict the KLF4 binding sites in the promoter region of TXNIP. RESULTS: In human UC tissues and/or LPS/ATP stimulation human colon epithelial cells, KLF4, TXNIP, Caspase-1, and GSDMD expression level were significantly elevated via quantitative reverse transcription PCR, immunohistochemical and western blot assay. Moreover, We identified that there is an interaction between KLF4 and TXNIP through Yeast double hybrid assay and CO-IP assay. We successfully constructed a KLF4-silenced human intestinal epithelial cell line. In LPS/ATP stimulation KLF4-silenced human intestinal epithelial cells, KLF4, TXNIP, Cleave Caspase-1, ASC, and GSDMD expression level were significantly decreased via quantitative reverse transcription PCR. CONCLUSION: Our results confirm that KLF4 can positively regulate the expression of TXNIP and regulate the pyroptosis process of UC through the TXNIP/NLRP3 pathway.


Assuntos
Colite Ulcerativa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Lipopolissacarídeos/farmacologia , Fator 4 Semelhante a Kruppel , Caspases/metabolismo , Trifosfato de Adenosina , Proteínas de Transporte/genética
12.
Stem Cell Res ; 76: 103331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341988

RESUMO

We generated a human induced pluripotent stem cell (hiPSC) line from erythroid progenitor cells (EPCs) of a 20-year-old female healthy donor using Sendai virus vector encoding Yamanaka factors OCT3/4, SOX2, c-MYC, and KLF4. The established hiPSCs showed a standard morphology and expression of typical undifferentiated stem cell markers, a normal karyotype (46, XX), and demonstrated potential for differentiation in vitro. Furthermore, they were successfully differentiated into cardiomyocytes that expressed cardiomyocyte-specific markers. The iPSC line and iPSC-derived cardiomyocytes will provide new avenues for future drug testing/development and personalized cell therapy for cardiovascular diseases (CVDs).


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto Jovem , Diferenciação Celular , Reprogramação Celular , Células Precursoras Eritroides , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel
13.
Stem Cell Res ; 74: 103288, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181637

RESUMO

Peripheral blood mononuclear cells were obtained from two patients diagnosed with amyotrophic lateral sclerosis (ALS), a 47-year-old female and a 45-year-old male. Induced pluripotent stem cells (iPSCs) were generated using a non-integrating SeV-based method, delivering the transcription factors OCT4, SOX2, c-MYC, and KLF4. These transgene-free iPSC lines exhibited typical pluripotent cell morphology, expressed pluripotency-associated markers, and had tri-lineage differentiation potential. Both iPSC lines were free of mycoplasma contamination and displayed normal karyotypes. The availability of these two cell lines provides a promising opportunity to use sporadic ALS models for investigating the intricate pathological mechanisms of ALS.


Assuntos
Esclerose Amiotrófica Lateral , Células-Tronco Pluripotentes Induzidas , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Células-Tronco Pluripotentes Induzidas/metabolismo , Esclerose Amiotrófica Lateral/patologia , Leucócitos Mononucleares/metabolismo , Fator 4 Semelhante a Kruppel , Diferenciação Celular
14.
Stem Cell Res ; 75: 103318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295749

RESUMO

We generated PUMCi005-A, an induced pluripotent stem cell (iPSC) line, from dermal fibroblasts of a 32-year-old female Perrault syndrome patient with double heterozygous (794 G > A and 1181 G > A) mutations in the TWNK gene using Sendai viral delivery of OCT4, SOX2, KLF4, and c-MYC. The PUMCi005-A iPSC line carried the TWNK mutations, displayed typical iPSC morphology, expressed pluripotent stem cell markers, did not have integration of Sendai virus, and exhibited a normal karyotype and differentiation into three germ layers.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Perda Auditiva Neurossensorial/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Diferenciação Celular/genética , Vírus Sendai/genética , Mutação/genética , Fibroblastos/metabolismo
15.
Reprod Sci ; 31(3): 727-735, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884729

RESUMO

As a core transcriptional factor regulating pluripotency, Krüppel-like factor 4 (KLF4) has gained much attention in the field of stem cells during the past decades. However, few research have focused on the function of KLF4 during human primordial germ cell (PGC) specification. Here, we induced human PGC-like cells (hPGCLCs) from human embryonic stem cells (hESCs) and the derived hPGCLCs upregulated PGC-related genes, like SOX17, BLIMP1, TFAP2C, NANOS3, and the naïve pluripotency gene KLF4. The KLF4-knockout hESCs formed typical multicellular colonies with clear borders, expressed pluripotency genes, such as NANOG, OCT4, and SOX2, and exhibited no differences in proliferation capacity compared with wild type hESCs. Notably, KLF4 deletion in hESCs did not influence the induction of PGCLCs in vitro. In contrast, overexpression of KLF4 during PGC induction process inhibited the efficiency of PGCLC formation from hESCs in vitro. Overexpression of KLF4 may regenerate the naïve ground state in hESCs and results in repression for PGC specification. Thus, KLF4 could be a downstream target of human PGC program and the upregulation of KLF4 is prepared for late stage of germline development.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Germinativas/metabolismo , Genes Homeobox , Diferenciação Celular
16.
J Nutr Biochem ; 124: 109509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37907170

RESUMO

Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.


Assuntos
Intolerância à Glucose , Placenta , Animais , Feminino , Camundongos , Gravidez , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Células Endoteliais/metabolismo , Glucose/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Fator 4 Semelhante a Kruppel , Placenta/metabolismo , Placentação , Suínos
17.
Stem Cell Reports ; 19(1): 141-157, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134923

RESUMO

Although it is in its early stages, canine induced pluripotent stem cells (ciPSCs) hold great potential for innovative translational research in regenerative medicine, developmental biology, drug screening, and disease modeling. However, almost all ciPSCs were generated from fibroblasts, and available canine cell sources for reprogramming are still limited. Furthermore, no report is available to generate ciPSCs under feeder-free conditions because of their low reprogramming efficiency. Here, we reanalyzed canine pluripotency-associated genes and designed canine LIN28A, NANOG, OCT3/4, SOX2, KLF4, and C-MYC encoding Sendai virus vector, called 159cf. and 162cf. We demonstrated that not only canine fibroblasts but also canine urine-derived cells, which can be isolated using a noninvasive and straightforward method, were successfully reprogrammed with or without feeder cells. ciPSCs existed in undifferentiated states, differentiating into the three germ layers in vitro and in vivo. We successfully generated ciPSCs under feeder-free conditions, which can promote studies in veterinary and consequently human regenerative medicines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cães , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Fator 4 Semelhante a Kruppel , Células Alimentadoras , Fibroblastos , Diferenciação Celular/genética
18.
Physiol Genomics ; 56(3): 265-275, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145289

RESUMO

Agouti-related peptide (AgRP/Agrp) within the hypothalamic arcuate nucleus (ARC) contributes to the control of energy balance, and dysregulated Agrp may contribute to metabolic adaptation during prolonged obesity. In mice, three isoforms of Agrp are encoded via distinct first exons. Agrp-A (ENSMUST00000005849.11) contributed 95% of total Agrp in mouse ARC, whereas Agrp-B (ENSMUST00000194654.2) dominated in placenta (73%). Conditional deletion of Klf4 from Agrp-expressing cells (Klf4Agrp-KO mice) reduced Agrp mRNA and increased energy expenditure but had no effects on food intake or the relative abundance of Agrp isoforms in the ARC. Chronic high-fat diet feeding masked these effects of Klf4 deletion, highlighting the context-dependent contribution of KLF4 to Agrp control. In the GT1-7 mouse hypothalamic cell culture model, which expresses all three isoforms of Agrp (including Agrp-C, ENSMUST00000194091.6), inhibition of extracellular signal-regulated kinase (ERK) simultaneously increased KLF4 binding to the Agrp promoter and stimulated Agrp expression. In addition, siRNA-mediated knockdown of Klf4 reduced expression of Agrp. We conclude that the expression of individual isoforms of Agrp in the mouse is dependent upon cell type and that KLF4 directly promotes the transcription of Agrp via a mechanism that is superseded during obesity.NEW & NOTEWORTHY In mice, three distinct isoforms of Agouti-related peptide are encoded via distinct first exons. In the arcuate nucleus of the hypothalamus, Krüppel-like factor 4 stimulates transcription of the dominant isoform in lean mice, but this mechanism is altered during diet-induced obesity.


Assuntos
Fator 4 Semelhante a Kruppel , Neurônios , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Hipotálamo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Stem Cell Res ; 74: 103273, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38100913

RESUMO

Human induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells (PBMCs) isolated from a patient diagnosed with spontaneous late-onset Alzheimer's disease (AD) carrying ApoE3/3 gene and one age-, sex-, and ApoE-matched healthy control. Reprogramming was done using a commercially available Epi5 Reprogramming Kit containing OCT4, SOX2, KLF4, LIN28, and L-MYC as reprogramming factors. The pluripotency of the iPSC lines was verified by the expression of pluripotency markers and by their capacity to differentiate into all three embryonic germ layers in vitro. These newly established iPSC lines offer a valuable platform for in vitro modeling of AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Apolipoproteína E3/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Leucócitos Mononucleares/metabolismo , Fator 4 Semelhante a Kruppel , Genótipo , Diferenciação Celular
20.
Medicine (Baltimore) ; 102(48): e36433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050242

RESUMO

The dedifferentiation process of tumorigenesis and somatic cell reprogramming has some commonness and differences, which is the key question to cancer therapeutic strategy and stem cell applications. To further explore the commonalities and variance between carcinogenesis and induced pluripotent stem cell reprogramming, we investigated the role of stemness factors OSKM (OCT4, SOX2, KLF4, and MYC) in the pan-cancer process using public clinical data. Expression of OSKM in human pan-cancer was analyzed via the Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) database based on the RNA-seq data of tissues. The correlation of expression between OSKM genes was analyzed via the Tumor Immune Evaluation Resource (TIMER) database, while the STRING tool was used to construct the protein-protein interaction network for OSKM. Prognostic impact of OSKM in pan-cancer was analyzed by Cox proportional hazards regression model. The relationships between OSKM and tumor stemness, tumor microenvironment and immune checkpoint and were performed by Sangerbox platform using Pearson correlation analysis. Our results showed that OSKM were universally expressed and significantly altered in tumors compared with adjacent normal tissues in most tumor types. In addition, correlation analysis revealed the relevance of OSKM genes to patient prognosis, cancer cell stemness, tumor microenvironment or immune checkpoint. However, there is little similarity between these genes in terms of how they function in each cancer type. This study elucidates the different roles of core stemness factors OSKM in pan-cancer, offering potential therapeutic targets for novel anti-cancer strategies and knowledge to minimize the potential carcinogenic effects during stem cell transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Neoplasias , Fator 3 de Transcrição de Octâmero , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição SOXB1 , Humanos , Reprogramação Celular , Fator 4 Semelhante a Kruppel/genética , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOXB1/genética , Microambiente Tumoral/genética , Fator 3 de Transcrição de Octâmero/genética , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA